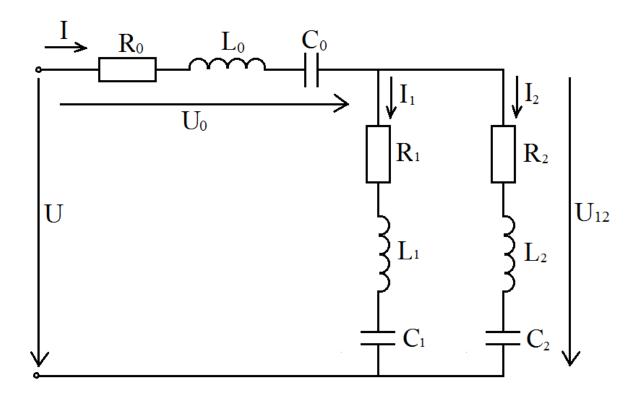
ПРАКТИЧЕСКАЯ РАБОТА


«Расчет цепи переменного тока методом комплексных чисел»

В схеме последовательно – параллельного соединения заданы напряжение цепи синусоидального тока и сопротивления элементов схемы.

Начертить схему цепи, включая те элементы, численные значения которых заданы в таблице по Вашему варианту.

Определить с помощью метода комплексных чисел значения всех токов $I,\ I_1,\ I_2,$ напряжений $U_0,\ U_{12};$ активную P, реактивную Q и полную S мощности цепи, коэффициент мощности соѕ ϕ .

Построить векторную диаграмму токов и напряжений в масштабах на комплексной плоскости (по комплексам напряжений U, U_0, U_{12} и комплексам токов I, I_1, I_2).

<i>№</i> вар.	U, B	R ₀ , Ом	X _{L0} , Ом	Х _{С0} , Ом	R ₁ , Ом	X _{L1} , Ом	Х _{С1} , Ом	R ₂ , Ом	X _{L2} , Ом	Х _{С2} , Ом
1	60	5	5	0	8	0	6	6	8	0
2	130	10	0	0	6	8	0	0	0	10
3	85	5	0	0	4	3	6	0	5	0
4	130	0	0	5	3	7	3	5	0	0
5	185	5	0	40	20	40	0	20	0	40
6	100	5	5	0	6	0	8	8	6	0
7	130	3	4	0	0	0	5	5	5	0
8	125	0	50	0	30	80	40	0	0	50
9	200	3,2	17,6	0	16	12	0	8	14	20
10	125	11,6	0	13,8	10	10	0	30	10	50
11	120	12	8	0	16	0	14	18	12	0
12	280	24	0	0	12	18	0	0	0	26
13	170	10	0	0	9,6	12,2	8	0	14	0
14	260	0	0	10	15	5	16	10	0	0
15	270	10	0	30	60	80	0	25	0	35
16	300	24	12	0	32	0	28	20	20	0
17	390	9	9	0	0	0	5	10	12	0
18	250	0	75	0	55	90	45	0	0	30
19	500	18	0	22	20,8	24,6	0	20	50	30
20	400	34,2	6,6	0	24	36	0	26	16	38
21	180	18	20	0	16	0	22	20	24	0
22	380	32	0	0	22,5	26,5	0	0	0	30
23	255	15	0	0	10	13	19	0	17	0
24	400	0	0	22	16	24	18	8	0	0
25	90	10	0	26	34	26	0	16	0	12
26	200	14	21	0	13	0	13	19	15	0
27	260	12	9	0	0	0	16	7	7	0
28	370	0	80	0	90,2	120,6	60	0	0	80
29	345	12	0	16	16,6	14,4	0	18	35	14
30	295	17	4,4	0	19	16,2	0	15	9	22

ПРИМЕР

Цепь переменного тока состоит из последовательно - параллельного соединения элементов. В первую параллельную ветвь включены последовательно активное и индуктивное сопротивления: R1=10 Ом, XL1=20 Ом. Во вторую параллельную ветвь включены последовательно активное и емкостное сопротивления: R2=10 Ом, XC2=20 Ом. В последовательный участок цепи включены последовательно активное и индуктивное сопротивления: R0=5 Ом, XL0=40 Ом. Напряжение на зажимах цепи U=100 В.

Определить комплексным методом токи в параллельных ветвях I1, I2 и ток I в неразветвленной части цепи; полную S, активную P и реактивную Q мощности и коэффициент мощности cos ф.

Построить векторную диаграмму напряжений и токов на комплексной плоскости, используя масштабы MU=10 B/см и MI=0,4 A/см.

Дано:

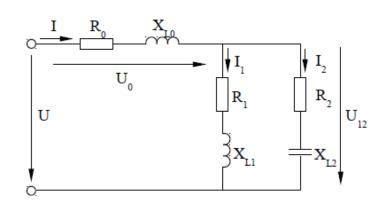
 $R_1 = 10 \text{ Om};$

 $X_{L1} = 20 \text{ Om};$

 $R_2 = 10 \text{ Om};$

 $X_{C2}=20 \text{ Om};$

 $R_0=5 \text{ OM};$


 $X_{L0}=40 \text{ Om};$

U=100 B:

 $M_{U} = 10 \text{ B/cm};$

 $M_1=0.4 \text{ A/cm}.$

Определить: I_1 , I_2 , I, S, P, Q, $\cos \varphi$.

Решение.

1 Комплексы полных сопротивлений параллельных ветвей:

$$Z_1 = R_1 + jX_{L1} = (10 + j20) O_M = 22.36e^{+j63.4^{\circ}} O_M;$$

$$Z_2 = R_2 - jX_{C2} = (10 - j20) O_M = 22.36e^{-j63.4^{\circ}} O_M.$$

2 Комплекс полного сопротивления последовательного участка цепи:

$$Z_0 = R_0 + jX_{L0} = (5 + j40) O_M = 40.3e^{+j82.9^{\circ}} O_M$$

$$Z_0 = R_0 + jX_{L0} = (5 + j40) \ OM = 40,3e^{+j82,9^{\circ}} \ OM.$$
 3 Комплекс полного сопротивления параллельного участка цепи:
$$Z_{\underline{12}} = \frac{Z_{\underline{1}} \cdot Z_{\underline{2}}}{Z_{\underline{1}} + Z_{\underline{2}}} = \frac{22.36e^{j63.4^{\circ}} \cdot 22.36e^{-j63.4^{\circ}}}{10 + j20 + 10 - j20} = \frac{500}{20} = 25 \ OM.$$

4 Комплекс полного сопротивления всей цепи:

$$\underline{Z} = \underline{Z_0} + \underline{Z_{12}} = 5 + j40 + 25 = 30 + j40 = 50e^{j53.13^{\circ}} O_{\mathcal{M}}.$$

5 Комплекс напряжения цепи.

Принимаем, что вектор напряжения будет исходным, совпадающим с положительным направлением действительной оси. Тогда:

$$\overline{U}$$
 =U=100 B.

6 Комплекс тока в неразветвленной части цепи определяем по закону Ома:

$$\dot{I} = \frac{\dot{U}}{Z} = \frac{100}{50e^{j53.13^{\circ}}} = 2e^{-j53.13^{\circ}} = (1.2 - j1.6) A$$

7 Действующее значение общего тока равно модулю его комплексного выражения:

8 Напряжение на последовательном участке цепи, т. е. на сопротивлении Z₀.

$$\dot{U}_0 = \dot{I} \cdot Z_0 = 2e^{-j53.13^{\circ}} \cdot 40.3e^{j82.9^{\circ}} = 80.6e^{j29.77^{\circ}} B = (70 + j40) B$$

9 Напряжение на параллельном участке цепи:

$$\dot{U}_{12}=\dot{U}-\dot{U}_0=100-70-j40=(30-j40)~B=50e^{-j53.13^\circ}~B$$
 или $\dot{U}_{12}=\dot{I}\cdot Z_{12}=2e^{-j53.13^\circ}\cdot 25=50e^{-j53.13^\circ}~B=(30-j40)~B$

10 Комплексы токов параллельных ветвей по закону Ома:

$$\dot{I}_{1} = \frac{\dot{U}_{12}}{\underline{Z}_{1}} = \frac{50e^{-j53.13^{\circ}}}{22.36e^{j63.4^{\circ}}} = 2.24e^{-j116.53^{\circ}} = -2.24e^{j(180^{\circ}-116.53^{\circ})} = -2.24e^{j63.4^{\circ}} \ A = (-1-j2) \ A;$$

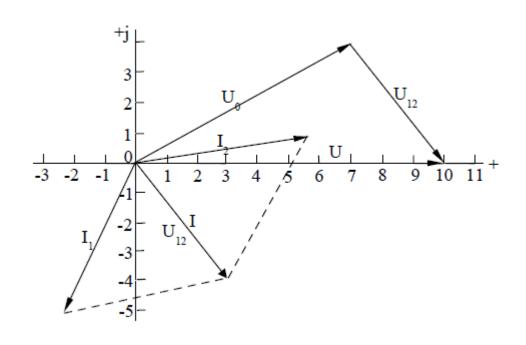
$$\dot{I}_{2} = \frac{\dot{U}_{12}}{\underline{Z}_{2}} = \frac{50e^{-j53.13^{\circ}}}{22.36e^{-j63.4^{\circ}}} = 2.24e^{j10.27^{\circ}} \ A = (2.2+j0.4) \ A.$$

11 Проверить вычисление комплексов токов можно по первому закону Кирхгофа:

$$\vec{I} = \vec{I}_1 + \vec{I}_2$$
; 1.2 – j 1.6 = –1 – j 2 + 2.2 + j 0.4; (1.2 – j 1.6) A = (1.2 – j 1.6) A . Вычисления выполнены верно.

12 Действующие значения токов ветвей равны соответственно модулям их комплексных выражений:

13 Комплекс полной мощности определяется как произведение комплекса напряжения и сопряженного комплекса тока:


$$\dot{S} = \dot{U} \cdot \dot{I}^* = 100 \cdot 2e^{j53.13^\circ} = 200e^{j53.13^\circ}$$
 $BA = (120 + j160)$ BA ;
т. к. $\dot{S} = P \pm jQ$, то активная мощность $P=120$ Вт; реактивная мощность $Q=160$ вар; полная мощность — модуль комплекса S - $S=200$ ВА.

14 Построение векторной диаграммы легче выполнить на комплексной плоскости, используя алгебраическое выражение токов и напряжений и соотношения: $\dot{I} = \dot{I}_1 + \dot{I}_2$; $\dot{U} = \dot{U}_0 + \dot{U}_{12}$, в заданных масштабах M_U =10 В/см и M_I =0,4 А/см.

Векторная диаграмма построена на рисунке.

Координаты концов векторов: \overline{U} (10; 0); \overline{U}_0 (7; 4); \overline{U}_{12} (3; -j4);

$$\overline{I}_1$$
(-2.5; -j5); \overline{I}_2 (5.5; j1); \overline{I} (3; -j4).

