Математика: алгебра, начала математического анализа; геометрия

12619903-3d--nf-noen-n---noe----n-----n-n----------------n------n-n---------n

    В результате освоения дисциплины студент должен знать:

-значение математической науки для решения задач, возникающих в теории и практике;

– широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

– вероятностный характер различных процессов окружающего мира;

    В результате освоения дисциплины студент должен уметь:

– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

– определять значение функции по значению аргумента при различных способах задания функции;

– строить графики изученных функций;

– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

– вычислять производные и первообразные элементарных функций, используя справочные материалы;

– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

– вычислять в простейших случаях площади с использованием первообразной;

– решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

– составлять уравнения и неравенства по условию задачи;

– использовать для приближенного решения уравнений и неравенств графический метод;

– изображать на координатной плоскости множества решений простейших уравнений и их систем;

– решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

– вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

– распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

– описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

– анализировать в простейших случаях взаимное расположение объектов в пространстве;

– изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

– строить простейшие сечения куба, призмы, пирамиды;

– решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

– использовать при решении стереометрических задач планиметрические факты и методы;

– проводить доказательные рассуждения в ходе решения задач.