Математика: алгебра, начала математического анализа; геометрия
В результате освоения дисциплины студент должен знать:
-значение математической науки для решения задач, возникающих в теории и практике;
– широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
– вероятностный характер различных процессов окружающего мира;
В результате освоения дисциплины студент должен уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций;
– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
– вычислять производные и первообразные элементарных функций, используя справочные материалы;
– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
– вычислять в простейших случаях площади с использованием первообразной;
– решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
– составлять уравнения и неравенства по условию задачи;
– использовать для приближенного решения уравнений и неравенств графический метод;
– изображать на координатной плоскости множества решений простейших уравнений и их систем;
– решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
– вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
– распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
– описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
– анализировать в простейших случаях взаимное расположение объектов в пространстве;
– изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
– строить простейшие сечения куба, призмы, пирамиды;
– решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
– использовать при решении стереометрических задач планиметрические факты и методы;
– проводить доказательные рассуждения в ходе решения задач.